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A model for the axial decay of a shock wave 
in a large abrupt area change 
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A shock-dynamic model based on the symmetrical expansion of the critical shock 
is used to analyse the progressive decay of an originally planar shock wave 
through a large and abrupt area change. This is tested against measurements of 
shock strength made along the axes of area changes where the shock waves are 
free to expand in two or three dimensions. 

The critical shock is defined as the configuration when the decaying shock wave 
a t  the axis first becomes curved. The axial shock begins to decay less than one 
diameter from the entrance of the area change. Differences between the experi- 
mental onset of decay and the theoretical position of the critical shock are 
accounted for by the non-ideal behaviour of a practical pressure transducer. 

The model predicts that, when the shock wave is decaying symmetrically, there 
is a linear relationship between a derived function E of the decaying shock strength 
and the distance from the area change. This is confirmed experimentally for all 
the shocks studied. The quantitative application of the results in three dimen- 
sions up to 400 mm enables accurate predictions of experimental results at 1 m 
for M < 2.0. Also, the model may be applied to three-dimensional results to 
predict accurately equivalent results in two dimensions. 

The numerical values of E are based on the equivalence of the ratio of the shock 
areas and the ratio of their Chisnell(l957) functions. Hence correlations between 
experimental results and predictions of the model are evidence that Chisnell’s 
theory can be extended to include large and abrupt area changes. 

1. Introduction 
Chester (1953, 1954) developed an analytical treatment for the motion of 

a shock wave along a gradually diverging duct. This was based on linearization 
of the hydrodynamic equations and is only strictly valid for small area changes. 

Chisnell (1957) integrated Chester’s equations and derived in closed form a 
relationship between the cross-sectional area of the channel and the pressure 
ratio of the resultant shock wave. This was used to determine the quasi-steady 
pressure level in the exit channel of a small and gradual area change simply from 

where A and A’ are the cross-sectional areas of the entrance and exit ducts 
respectively and f(2) and f(2‘) are the Chisnell functions appropriate to the 
incident and decayed shock waves. 

Af(2) = A’f(Z’),  (1) 
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The extension of the Chester-Chisnell treatment to predicting unsteady 
pressures following and within area changes which are not small is a source of 
controversy. Davies & Guy (1971) used Chisnell's relationship in their stepwise 
model for the unsteady shock strength. They compared experimental and theo- 
retical results for area changes of 4 : 1 and 10 : 1 and found the correlation satis- 
factory only for the smaller ratio. Decker  & Gururaja (1970) have examined the 
decay of a shock wave in a diffuser and concluded that Chisnell's analysis was 
unsatisfactory. 

Since the Chester-Chisnell method is such an important too1 in the theoretical 
treatment of expanding shock waves, it  would be useful to know the limits of its 
application. To this end Nettleton (1973) studied the effect of the angle of 
divergence and the magnitude of the area ratio (up to 5.0) on the attenuation of 
a shock wave in a two-dimensional expansion. He concluded that, for a shock 
wave with an initial Mach number less than 3.0, the Chisnell analysis adequately 
predicted the quasi-steady shock strength 5 diameters downstream of the area 
change for divergence angles up to  15". 

Whitham (1957, 1959) approached the problem of expanding shock waves 
from the theory of characteristics. He introduced the concept of rays, which 
basically are the trajectories of points on the wave front and as such are neces- 
sarily orthogonal to the shock wave a t  the point of contact. His treatment of the 
propagation of an element of the shock wave along a narrow tube of neighbouring 
rays was based on an analogy with the propagation in a solid tube of smoothly 
varying cross-section. It was assumed that the local Mach number M of the shock 
wave and t,he area A of t'he ray tube were functionally related by Chisnell's 
relationship. Skews (196G) used Whitham's theory in his quantitative description 
of shock diffraction. 

The results reported in § 3 are for the incident shock strength along the axis as 
an originally planar shock wave was allowed to expand through a large and 
sudden area change. Area changes both of circular and of rectangular cross- 
section were studied, and the results are alternatively referred to as three- and 
two-dimensional or as having three and two degrees of freedom respectively. The 
shock waves eventually acquired spherical or cylindrical symmetry. I n  each case 
the side wall was at an angle of 90" to the axis, giving an abrupt change in cross- 
section. The parallel walls of the larger duct were so distant that waves reflected 
from them did not affect the measurements. Thus each area change was effectively 
a half-space. 

The incident shock strengths were obtained from reflected-shock profiles. This 
was necessary in the three-dimensional experiments since it was not feasible to 
measure directly the pressure of a decaying incident shock. In the two-dimen- 
sional case, it  was chosen because it allowed measurements at any position and 
required only one gauge calibration. I n  contrast, James (1965) measured shock 
strengths both along the axis and at angles of from 30" to 150", with a series of 
gauges. The interaction of the shock wave with the leading gauge is likely to 
affect the results a t  subsequent gauges. Interference of reflexions from the ground 
(about 1 m from the axis) precludes generalization of James' results. 

In $4 a model for the decay of the shock is developed, based on a two-stage 
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Expansion tank body 

FIQUIW 1. Expansion tank and reflecting plate. 

process. The first is diffraction, during which no attenuation occurs along the 
axis. The shock configuration a t  the completion of this is defined as the critical 
shock. The second stage is the expansion of this critical shock, which eventually 
attains either spherical or cylindrical symmetry. Chisnell’s (1 957) equations are 
used to quantify the model in terms of E ,  which is a measure of shock decay. It is 
found that soon after the critical shock position c is a linear function of the axial 
distance. Such linear relationships allow transformation of the results from three 
dimensions to predict accurately the results in two dimensions. In  5 5 it is argued 
that Chisnell’s theory can be extended to include unsteady shock decay in a half- 
space, provided that the initial conditions are defined in terms of the critical 
shock configuration. 

2. Experimental 
The three-dimensional results were obtained when an originally planar shock 

wave in a cylindrical shock tube of diameter 79 mm was alIowed to expand into 
a cylindrical tank of diameter l m  (figure 1). To obtain pressure histories a 
Kistler 601A pressure transducer was located axially within the tank in a 
reflecting plate of diameter 200 mm. Thus, on the axis, the face of the transducer 
was normal to the shock flow. The plate was placed a t  distances up to 450 mm 
from the entrance of the tank. The output from the transducer was amplified by 
a Kistler566 charge amplifier and displayed on a Tektronix 556 oscilloscope 
fitted with a filter to attenuate frequencies above 30 kHz. This was required to 
reduce the contribution to the signal of resonant ringing of the transducer. The 
portion of the profile before the peak occurring 11 ps after shock reflexion was not 
reproducible. The transducer/plate assembly was calibrated for this peak (indi- 
cated by the arrow in figure 2) by reflecting shocks of known strength from the 
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T 
( A )  Two dimensions, M= 1.96 ( B )  Three dimensions, M=2.14 

T 

FIGURE 2. Typical pressure histories. All divisions on abscissae 2 0 , ~ s .  

Ordinate scale Ordinate scale 
X (mm) X (Nm-2div-1) A-(mm) x (N in-2div-1) 

0.025 8 x  104 
( b )  17.3 0.79 2 x lo4 (e) 58 0.73 8 x lo4 
( C L )  2 0.09 4~ 104 ( d )  2 

(c) 147 6 6 8  1 x 10' ( , f )  275 3.4s s x  103 

plate with the plate a t  a distance of 2 mm from the entrance to the area change, 
and a linear calibration was obt,ained from 1.4 to 5.0 bar. This was extrapolated 
to  the origin and used to  determine the overpressure due to reflexion of a decaying 
shock front' as the plate was moved away from the entrance to the area change. 
Figure 2 ( B )  shows typical pressure histories. 

The apparatus for the two-dimensional experiments was similar. A planar 
shock wave from a rectangular shock tube (47 x 22mm) was vented into a 
parallel-sided 90" expansion tank of cross-section 47 x 340 mm. The laterally 
expanding shock wave was reflected from a rectangular plate (44 x 200mm) in 
which was located axially a Kistler 603 B pressure transducer. This acceleration- 
compensated transducer had a higher frequency response (400 kHz compared 
with 150 kHz) which was only partly negated by the 150 kHz frequency response 
of t'he charge amplifier. Thus it was possible to obtain acceptable results using 
the peak occurring only 3ps after shock reflexion (indicated by the arrow in 
figure 2 A ) .  The pressure profile (figure 2A) was recorded without use of the 
frequency filter on the oscilloscope. The calibration graph was linear over its 
entire range (0.58-1.7 bar) and was extrapolated to the origin as before. Pressure 
histories were obtained with the reflecting plate a t  distances up to  280 mm from 
the ent,rance of the tank. 

Pressure histories were also obtained when the shock wave was reflected from 
a transducer mounted axially on the rear wall of the cylindrical tank ( X  = 1 m). 



Axial decay of a shock wave in an abrupt area change 773 

5.0 
X 

4.0 b+*". 
6.0 

5.0 17 
4.0 p< *. 

f .  

C '  

3.0 - + 
+ *  

2' 2.5 :To ++ 

0 0  
2.0 - 0 + *  

O O  + 

1.5 - 
+ +  
0 0  

a 

+ .=.. 
+ a  

+ +  
+ + +  

0 
0 

0 0  

o o o o  

+ 

0 

a 

+ 
c 

0 
0 

1.01 I I ' I I ' I *  
0 1 2 3 4 5 6 7 Bd.5 

x = Xld x = Xlw 

( a )  ( b )  

FIGURE 4. Axial shock strength of incident shocks expanding with (a) three and ( 6 )  two 
degrees of freedom. 

0 + 0 X 

( a )  1.55 1-92 2.14 2 4 2  
( b )  M 1.57 1.96 2.18 

Since this transducer was solidly mounted no special calibration was required. 
These experiments were carried out in the absence of the reflecting plate. 

Single-shot schlieren photographs (figure 3, plate 1) of a decaying shock wave 
of initial Mach number 1.5 were obtained using an argon jet light source of sub- 
microsecond duration. I n  order to  model the side wall, the cylindrical tank was 
replaced by a smooth annulus of diameter 1 m coaxial with and of the same bore 
as the shock tube. 

3. Results 
I n  order to compare the experimental results for the two geometries it is neces- 

sary to define a non-dimensional distance co-ordinate x. This is the axial distance 
divided by either the diameter d of the cylindrical shock tube or the width iu 
(22 mm) of the shock tube of rectangular cross-section, as appropriate. 

Primed quantities are used throughout to denote parameter values after the 
shock wave has entered the area change. 

Pressure histories (figure 2) were obtained from shock waves propagating 
through air in the expansion tanks of cylindrical or spherical symmetry. Using 
the calibration graphs and the standard equation connecting the pressures on 
either side of a reflected shock, the height of the appropriate peak gave the 
pressure ratio 2' of the decaying incident shock. Figures 4 (a)  and (b) show 2' as 
a function of x as the reflecting plate is moved away from the entrance to the area 
change. The results from the cylindrical shock tube (figure 4 a )  were reproducible 
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FIGURE 5 .  Reflected-shock strength at x = 12.7 for three degrees of freedom. x , air driven; 

+ , He driven; 0, extrapolated from results up t o  x = 4.5. 

to within a few per cent and only one run was required for each position of the 
plate. The fluctuations in the two-dimensional results were much larger and each 
point in figure 4 represents the mean of values of 8’ from three runs. The initial 
shock Mach numbers in the two-dimensional system were 1.57, 1.96 and 2.18. 
These are comparable to the Mach numbers of 1-55, 1-92 and 2.14 in the three- 
dimensional experiments, which also produced results for a Mach 2.42 shock. 
The characteristics of the two shock tubes were such that the spread of the initial 
Mach number within a series of runs with the cylindrical tube ( ~f: 1 yo) was about 
doubled when the rectangular tube was used, and this contributed to the Auctua- 
tions in the results obtained for each position of the plate. 

Plots such as figures 4 (a )  and ( b )  suggest that the expansion of a shock within 
an area change occurs in two phases. The axial shock strength remains roughly 
constant before decreasing rapidly. Each horizontal line corresponds to the 
pressure ratio 2 of an undecayed shock of the appropriate mean initial Mach 
number. These correlate well with the plateaus in figures 4 (a)  and (b ) ,  indicating 
that the shock must travel a significant distance before it weakens on the axis. 

This is supported by figure 3, which shows a series of schlieren photographs of 
a Mach 1-5 shock wave progressively decaying in a three-dimensional half-space 
from an almost planar shock in (a )  to a completely curved shock in (h). It should 
be noted that the axial (central) segment of the decaying shock remains planar 
for a considerable portion of its travel. While the axial part of the shock is planar, 
it has not been weakened, resulting in the plateaus in the pressure ratios shown 
in figures 4 (a) and (b ) .  
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Reflected pressure ratios 2: a t  x = 12.7 are shown in figure 5 for both air- and 
helium-driven shocks. Within the experimental error 2: is considered to be a 
linear function of the initial shock strength. 2: must asymptotically approach 
unity, since the shock will eventually decay to a sound wave. However, even with 
initial shock strengths as low as 2.3, significant reflected shock pressures were 
recorded at x = 12.7. 

4. A model of shock decay and comparison with experiment 
4.1. The model 

The most striking feature of the experimental results is the initial plateau in the 
pIots of shock strength against distance (figure 4) .  Thus the process of shock 
decay must occur in at least two very different stages. The application of 
Chisnell’s relationship (1)  in isolation will not predict such a pressure plateau. 

It is obvious from the schlieren photographs in figure 3 that the full description 
of shock decay involves the diffraction of the shock at the entrance to the area 
change. When a shock wave passes a convex corner an expansion wave is propa- 
gated radially through the flow behind the shock. This wave travels with the local 
velocity of sound relative to the gas. When the appropriate component of the gas 
velocity is added, the resultant wave becomes elongated in the direction of the 
flow. By considering the relative velocities of the expansion wave and the incident 
shock wave, Skews (1967) showed that the trajectory of the point of contact 
between the shock and the expansion wave was linear and inclined a t  an angle CL 

to the original direction of the flow, where 

I n  two dimensions the shock wave is diffracted a t  each edge of the area change. 
Considering both diffractions together leads to an exact description of the 
expansion of the shock up to the instant that the intersections of the shock and 
the expansion waves from the opposite corners cross. 

If the shock wave is free to expand in three dimensions, it  diffracts around the 
rim of the entrance of the area change. Skews’ equation was developed for a two- 
dimensional diffraction. The shape and strength of the diffracting wave is 
different in three dimensions, but the angle of propagation a of the intersection 
of the shock and expansion wave remains unchanged. 

The axial segment of the shock wave cannot attenuate until the expansion 
wave propagating along the shock front arrives at the axis. This important con- 
figuration in the process of the shock decay is defined as the ‘critical shock’, 
which at the axis still has the same Mach number and pressure ratio as the initial 
shock. Equation (2) is used to determine the position of the critical shock. For 
correlation with the experimental results for the onset of decay ( 9  4.2), this has 
to be modified to account for the non-ideal behaviour of the pressure transducer. 

Thus the concept of the model is that the shock does not experience any decay 
a t  the axis until it becomes the critical shock, after which it expands, eventually 



756 S.  A .  Sloan and M .  A .  Nettleton 

. /  
/ Plane of the entrance of 

1 the abrupt area change 
I 
I Critica!shock 

Spherically expanding 

/ -  

/ Plane of the entrance of 
1 the abrupt area change 
I 
I 
I 

I T - - - - - -  

I 

jH  

Ray 

I 

-. 
. 

FIGURE 6. Section through the axis of the flow field of a shock expanding with 
three degrees of freedom. 

acquiring the appropriate symmetry. The surface area of an axial segment of the 
critical shock is taken as the initial area A in a Chisnell-Whitham type analysis 
as shown in figure 6, which represents a section through the vertical axis of a small 
element of the flow field ofa shock wave expanding with three degrees of freedom. 
The plane of the entrance of the tank is HTI.  The shock wave first becomes non- 
planar a t  the axis a t  Q. The shock a t  Q is thus the critical shock. 

The rays HBFJ and ICGK represent a section through a very narrow hypo- 
thetical ray tube close to the axis of symmetry. By definition rays are normal to  
the shock wave a t  all points of contact. Each segment of the shock wave within 
the ray tube is considered as an element of a sphere, and tangents to the rays 
intersect on the axis a t  the centre of curvature of that segment of the shock 
wave. 

Thus the critical shock at Q has centre of curvature a t  0 and a radius of 
curvature T .  0 is the solid angle of the cone BOC. As the shock propagates beyond 
Q ,  its velocity, and thus the pressure ratio across it, decreases. This leads to a 
divergence of the rays, causing an increase in the surface area of the segment of 
the shock within the ray tube. While the rays remain curved, the position of the 
centre of curvature is changing. At some time during the decay, the rays become 
straight and the shock wave near the axis can be accurately described as having 
a fixed centre of curvature. Subsequent expansion of the shock segment within 
the ray tube has spherical symmetry. This is represented in figure 6 by the 
segment FSG centred on P. Subsequent segments of the shock expanding within 
the ray tube are also centred on P. Thus the solid angle 8’ remains constant. 

Consider now the mathematical implications of such a model. The use of dia- 
placement vectors in the analysis enables the geometric relationships to be 
formulated independently of changes in the relative positions of T ,  0, P and Q ,  
which in figure 6 were chosen arbitrarily. Each segment ofthe shock is treated as 
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an element of a sphere, and the initial area A is equated to the surface area of the 
axial segment of the critical shock. Applying Chisnell's relationship ( 1 )  leads to 

A' PX 2 e f  (A), = (=) 3 = 4, 
OQ 

(3) 

where the subscript 3 refers to the number of degrees of freedom of the shock 
expansion. Separating into its component vectors and writing the equation 
in terms of x gives 

A similar argument for an expansion with two degrees of freedom gives the 
following equation: 

w a' w ~'PT 
2 - - - x + = - - ,  (5) - 0 Q a  OQa w 

where a and a' are the linear angles between the rays. 

4.2. The onset of decay 

The positions of the onset of decay were determined accurately from plots of the 
normalized incident shock pressure ratio Z'/Z against distance (figure 7). This 
reduced the scatter due to the spread in the Mach number of the initial shock and 
accentuated the plateau region. The plateau was determined as the best line of 
zero slope and its level did not vary significantly from unity. The worst case was 
0.97 f 0.02 for the Mach 1.96 shock in two dimensions. The experimental onset 
of decay was determined by the intersection of the plateau and the least-squares 
straight line through the first few points of the decay curve. 

In  the idealized model, the position X, of the critical shock at  which decay 
begins is given by 

x, = gwcota ( 6 )  

or X, = i d  cot a. (7) 

Whitham's (1957) theory and Skews (1967) equations provide alternative 
values for the angle a of propagation of the point of contact between the shock 
and the expansion wave, giving rise to different predicted positions for the 
critical shock configuration. These are compared in table 1 with the experimental 
distances for the onset of decay. (The results are presented in mm rather than 
dimensionless units because the diameter of the pressure transducer is indepen- 
dent of the dimensions of the shock tube.) 

As can be seen, Whitham's theory predicts the critical shock to be at  distances 
much larger than the experimental values for the onset of decay. Those predicted 
by Skews' theory are in better agreement, but are still far from satisfactory. 

The positions of the critical shock and the onset of decay are directly com- 
parable only if the latter is based on the instantaneous detection of decay by an 
infinitely small transducer. However, in practice, shock pressures were measured 
st a time 7 (3 and llps) after reflexion using a transducer of diameter 5.6 nim. 
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FIGURE 7. The onset of incident-shock decay. I, two dimensions, M = 2.18; 
0 ,  three dimensions, M = 1.92. 

Number of 
degrees of 
freedom of 
expansion 

2 
2 
2 
3 
3 
3 
3 

Initial 
shock 
Mach 

number 
M 
1.57 
1.96 
2.18 
1.55 
1.92 
2.14 
2.42 

Whitham’s 
Experimental theory 

14.1 f 1.0 30.6 
15.2 f 1.4 27.6 
14.4 f 1.6 27.0 
60.3 & 3.1 110.8 
61.5 f 1.8 100.4 
60.3 f 2.8 97.4 
56.6 5.0 95.0 

x, (mm) xo (mm) 

Skews’ 
theory 

20.1 
20.6 
21.2 
72.1 
73.8 
75.7 
78.0 

x, (mm) 

Skews’ theory 
modified for 

non-ideal transducer 
& 

11.3 16.1 
11.4 16.3 
11.5 16.5 
48.9 58.8 
49.4 59.5 
50.0 60.3 
50-7 61.3 

x a  (mm) Xb (mm) 

TABLE 1. Correlation between experimental and theoretical positions of 
the onset of decay 

X, can be modified to account for these factors by making assumptions about the 
way in which a pressure transducer responds as an expansion wave crosses its 
surface. Thus a limiting position Xu for the detection of the onset of decay is that 
where at a time T after reflexion the expansion has just reached the outside edge 
of the pressure transducer. The values of Xu given in table 1 are limiting, because 
of the assumption that the pressure transducer is capable of detecting the initial 
and very small decrease in pressure of the shock. Owing to the scatter of the 
experimental results such an ideal situation does not occur. A less exacting 
criterion is that it is possible first to detect the pressure decrease when the head 
of the expansion wave has just reached the centre of the transducer. The corre- 
sponding distances X,, where the entire surface of the transducer has been 
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X X 

FIGURE 8. Cylindrical expansion, 
M = 1.67. 

FIGURE 9. Spherical expansion, 
M = 1-92. 

affected by the expansion wave, are given in the final column of table 1. It can be 
seen that for two degrees of freedom the experimental distances lie comfortably 
between the distances X, and x,, given by the assumptions of two extremes of 
transducer sensitivity. The results for the expansion with three degrees of 
freedom in general lie much closer to xb, which may reflect the lower frequency 
response of the transducer used. 

Thus differences between the experimental position of the onset of decay and 
the predicted position of the critical shock are accounted for by the non-ideal 
beha,viour of the pressure transducer. 

4.3. The axial decay of the shock wave 
The experimental results were expressed in terms of e2 and es using 

€2 = f(z,/f(z’)l €3 = (f(~)/f(Z’))+, (8), (9) 

where f(2) andf(2‘) are the Chisnell functions appropriate to the shock strengths 
of the initial and decaying shock waves. Equations (4) and ( 5 )  were tested by 
plotting the appropriate values of e against x. In  figure 8, which shows the two- 
dimensional results for a Mach 1.57 shock, each vertical bar represents the 
standard deviation within three runs. ez remains approximately constant at  1.0 
until the critical shock position is passed, when it increases steadily to follow 
adequately a linear relationship for x > 2.0. The straight line is much more 
striking in figure 9, which gives the three-dimensional results for a Mach 1-92 
shock. The results for all the shocks studied reduce to straight lines at least up to  
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Number of 
degrees of 
freedom of 
expansion 

2 
2 
2 
3 
3 
3 
3 

Mach 
number of 

initial 
shock 

1.57 
1.96 
2.18 
1.55 
1.92 
2.14 
2.42 

Slope 

3.96 f 0.19 
3-11 f 0.08 
2.79 f 0.09 
3.15 k 0.07 
2.84 f 0.03 
2-54 If: 0.06 
2.62 f 0.06 

E intercept 

- 4.37 f 0.94 
- 2.17 k 0.35 
- 2.05 2 0.40 
- 2.12 k 0.19 
- 1.58 & 0.08 
- 1.10 If: 0.15 
- 1.27 i 0.16 

TABLE 2. Least-squares analysis of E ‘us. x 

x intercept 

1.10 k 0.24 
0.70f0.11 
0.74 f 0.14 
0.67 f 0.06 
0.56 k 0.03 
0.43 f 0.06 
0.48 f 0.06 

Onset of 
linearity 

x 
2.0 
1.5 
1.5 
1.4 
1.3 
1.0 
1.0 

x = 8 and x = 4 for the two- and three-dimensional cases respectively. The dis- 
tance of the onset of linearity is given in table 2 along with data from a least- 
squares analysis of the lines. 

The geometrical requirements of the model led to (4) and ( 5 ) )  which are linear 
if both a’la! (or O’/O) and PT are constant (OQ is already constant by definition). 
These are exactly the requirements for symmetrical expansion; i.e. the shock 
wave appears to propagate from a fixed point P, leading automatically to a 
constant angle between the ray directions. 

Unfortunately, the analysis does not lead directly to values of V l O ,  a’/a or 
but the x intercept does give TP, the axial distance from the entrance of the area 
change to the point P on which the expansion is apparently centred. This point 
is always within the area change, and closer to the entrance for stronger shocks. 
The values of x at which the results begin to obey a linear relationship indicate 
that a shock wave must travel further to attain cylindrical symmetry in a two- 
dimensional case than the corresponding shock wave with three degrees of 
freedom needs to travel to become spherically symmetric. Also, in general the 
distance that a shock has to travel to attain symmetry decreases as the initial 
Mach number increases. 

4.4. Three-dimensional results at 12.7 diameters (1 m) 

Values of c3 at 1 m from the end of the shock tube have been obtained by substi- 
tuting x = 12.7 into (4) for each initial Mach number using the appropriate 
parameters from the linear analysis (table 2 ) .  It should be noted that, even with 
the large errors ( 5 15 yo) in the linear parameters, the spread in the reflected- 
shock pressure ratios is less than 2 %. 

The experimental and predicted results are compared in figure 5,  where a 
dashed line has been drawn through the predicted results. On this scale the spread 
in the predictions is small and has been omitted. As can be seen, the correlation 
is excellent for the two weakest shocks. For the stronger shock waves the experi- 
mental shock strengths are below those predicted. Although the correlation 
deteriorates as the initial Mach number increases, the predicted values of 2: are 
within 12% of those obtained by experiment. 
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FIGURE 10. Correlation between shock expansion in two and three dimensions. 0,  experi- 
mental, three dimensions; I, experimental, two dimensions; 0, predicted, two dimensions. 

4.5. Correlation between results in two and three dimensions 

The experimental values of e2 and e3 are best compared in terms of the ratio e2/e3. 
This quotient q was always between 1.25 and 0.85. These extreme values were 
obtained from the plateau region in three dimensions and in the early stages of 
the decay respectively. (The high value can be explained in terms of the response 
times of the two types of transducer used, since the transducer used for the 
measurements in two dimensions detected the onset of decay at  a lower 
value of 2.) As x increased, q rapidly approached 1.0, after which it increased 
slowly, so that at x = 5.0 the maximum value of q was only 1.13. 

In  view of the random and systematic errors incurred in the measurements, 
q was approximated as 1.0 for all values of x, leading to 

e3 N e2. (10) 

For values of e3, this approximation gave the corresponding values of e2 and thus 
the Chisnell function f (2') of the corresponding decaying shock in two dimensions. 
The shock strength 2' in two dimensions was obtained by iterative computation. 

The experimental results from the decay of a Mach 1.92 shock in three 
dimensions were reduced in this way to give predicted shock strengths in two 
dimensions. In  figure 10 these are compared with the experimental results for 
Mach 1.96 decay in two dimensions. The normalized incident overpressure 
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(2‘ - l)/(Z - 1) was plotted, since this gave greater separation between the experi- 
mental values and the predicted results than a simple plot of the normalized 
shock strength 2’/2. 

For x > 1-5 the correlation is evidently excellent, the predicted results 
generally lying within the experimental spread. Nearer to the area change the 
correlation is poorer, but is considered adequate for x > 0.9, below which the 
effect of using different pressure transducers predominates. These observations 
are generally true, and the predicted results are in excellent agreement with the 
experimental results for all the shock Mach numbers for x > 1.5. The approxima- 
tion q = 1.0 can be used in the reverse direction to predict three-dimensional 
results given the shock strengths in a two-dimensional expansion. This is of more 
practical use, since the apparatus required for measurements in a three- 
dimensional expansion is much larger and more complex. This study shows that 
results attained in two dimensions can readily be extrapolated to predict the 
corresponding shock decay in three dimensions. 

5. Discussion 
The model which has been developed provides a convenient method of 

analysing shock-strength measurements in decaying shock waves. In  effect the 
pressure ratio 2 of a shock is replaced by the functionf(2) (Chisnell 1957), which 
is inversely proportional to the surface area of a small element of the shock close 
to the axis. If the surface areas of the initial and decaying shock are known, then 
application of (1) gives the Chisnell functionf(2’) of the decaying shock, which by 
iteration leads to the decaying pressure ratio 2’. 

The surface areas are known only in the quasi-steady case of planar shocks 
which result from the passage of a shock through a small and gradual area change. 
In  all other cases, approximations have to be made or empirical relationships 
obtained. The latter approach leads to linear relationships between E and x for 
the range of shock Mach numbers studied. 

Ideally, values of E obtained by an infinitely small pressure transducer of 
perfect resolution remain at  unity until the critical position is reached at X,, 
predicted by the use of Skews’ value of a in (6) and (7). In  practice E is greater 
than unity a t  X,, and this can give an estimate of the effect of using a non-ideal 
pressure transducer. For example, for a Mach 1.55 shock, e3 is 1-27 a t  X,, and this 
leads to a value of the pressure ratio of the shock which is 12 yo lower than that 
of the critical shock. Such overall systematic errors arise from two sources, and 
the contribution from each has been estimated (table 3). 

First, the finite size of the pressure transducer means that the recorded 
pressure is the integrated effect of a pressure gradient across the diaphragm. The 
contribution of this effect is the same in two and three dimensions, but this is due 
to a fortuitous relationship between the dimensions of the rectangular and 
cylindrical shock tubes. This accounts for less than 5 % of the error and, as X is 
increased beyond X,, the pressure gradient across the diaphragm decreases and 
the integrated pressure tends to the true axial pressure. 

The second source of error arises from the delay 7 in measuring the overpressure. 
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Two dimensions Three dimensions - A > r \ 

M Size Time lag M Size Time lag 

1.57 4 Y" 3 Yo 1-55 4 Yn 8 %  
3.18 4.5 yn 5 %  2.14 4-5 yo 13 % 

TABLE 3. Contributions to the systematic error in 2' a t  the critical shock position 

Obviously, since the shock wave is followed by an expansion wave, measure- 
ments made at  the instant of shock reflexion would give higher pressures. As the 
pressure probe is moved beyond the critical shock position, the gradient of the 
expansion wave decreases rapidly. Hence as before the error decreases with axial 
distance and the delayed pressure measurement tends to the instantaneous 
pressure. 

The net effect is that the systematic errors decrease as the probe is moved 
beyond the critical shock position. Since even the maximum error causes only 
relatively small changes in the values of 6, it is expected that the linear plot is 
a close approximation to the ideal one. 

Thus it is claimed with considerable confidence that there is a linear relation- 
ship between e and x. This implies that the shock undergoes symmetrical expan- 
sion, and the ratio e of the Chisnell functions is a measure of the surface areas of 
the decayed and critical shock waves. Now it is expected that the shock wave will 
eventually undergo symmetrical expansion. Therefore the observed linear depend- 
ence is evidence of the equivalence of 8 and the area ratio. This important conclu- 
sion means that Chisnell's (1957) theory of the propagation of a shock wave 
through a gradual area change can be extended to include the unsteady propaga- 
tion of a shock through a large and abrupt area change, but that the area of the 
initial shock must be defined in terms of the surface area of the critical shock. 

Unfortunately, the analysis does not provide a means of determining these 
surface areas nor of predicting shock decay solely from a knowledge of the duct 
geometry. Nevertheless, considerable progress has been made towards the pro- 
duction of a quantitative model. For any shock with initial Mach number within 
the experimental range (1.5 .c M < 2.5), quantitative application of the linear 
relationships provides the strength of the decaying shock in a two- or three- 
dimensional half-space. Also, when the linear relationship has been determined 
experimentally for any initial shock Mach number, this can be extrapolated to 
predict the shock strength at  distances outside the experimental range. 

The validity of the approximation q = 1.0 provides further evidence that 
Chisnell's (1957) theory can be used for large abrupt area changes, and shows 
that the results do indeed scale in terms of x. It is of interest to note that in a 
gradual area change q = 1.0. Hence the geometrical relationship between 
cylindrically and spherically expanding shocks in gradual area changes is a 
reasonable approximation in the more complex situation of an abrupt area 
change. 
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6. Conclusions 
(i) Chisnell’s (1957) theory can be extended to include large abrupt area 

changes, provided that the initial area is defined in terms of the surface area of 
the axial segment of the critical shock. 

(ii) The critical-shock model gives a realistic and quantitative description of 
the behaviour of a shock wave in a half-space. The results predicted by the model 
can be reduced to a linear relationship between e and x. 

(iii) A shock wave must travel further to attain cylindrical symmetry on 
passing through a two-dimensional expansion than to attain spherical symmetry 
in a corresponding three-dimensional expansion. The apparent centre of the 
cylindrical symmetry is further from the entrance of the area change. 

(iv) The approximation e2 N e3 enables the prediction of the shock strength 
along the axis of a two-dimensional expansion given the corresponding results 
for the three-dimensional case (or vice versa). 

The work was carried out at  the Central Electricity Research Laboratories and 
is published by permission of the Central Electricity Generating Board. The 
authors would like to thank Mr S. Jones and Mr Y. S. So0 for their assistance with 
the experiments. Thanks are also due to Professor A. G. Gaydon for many helpful 
discussions. 
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